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We consider the dynamics of a polymer with finite extensibility placed in a chaotic flow
with large mean shear, to explain how the polymer statistics changes with Weissenberg
number, Wi , the product of the polymer relaxation time and the Lyapunov exponent
of the flow, λ̄. The probability distribution function (PDF) of the polymer orientation
is peaked around a shear-preferred direction, having algebraic tails. The PDF of the
tumbling time (separating two subsequent flips), τ , has a maximum estimated as λ̄−1.
This PDF shows an exponential tail for large τ and a small-τ tail determined by the
simultaneous statistics of the velocity PDF. Four regimes of Wi are identified for
the extension statistics: one below the coil–stretched transition and three above the
coil–stretched transition. Emphasis is given to explaining these regimes in terms of
the polymer dynamics.

1. Introduction
A number of experimental observations resolving the dynamics of individual

polymers (DNA molecules) in a permanent shear flow have been reported by Smith,
Babcock & Chu (1999), see also Hur et al. (2001). These results and the subsequent
theoretical/numerical study of Hur, Shaqfeh & Larson (2000) have focused on the
analysis of the power spectral density and simultaneous probability distribution
function (PDF) of the polymer extension in the permanent shear, with fluctuations
driven by thermal noise. Statistics of polymers and carbon nanotubes in shear flows
have been also investigated by Lee, Solomon & Muller (1997) and Hobbie et al. (2003).
In another experimental development by Groisman & Steinberg (2000, 2001, 2004),
a chaotic flow state called by the authors “elastic turbulence” was observed in dilute
polymer solutions. This flow consists of regular (shear-like) and chaotic components,
the latter being weaker. Resolving an individual polymer in this chaotic steady
flow was achieved by Gerashchenko, Chevallard & Steinberg (2004). The coil-stretch
transition, predicted by Lumley (1969, 1973) (see also Balkovsky, Fouxon & Lebedev
2000 and Chertkov 2000), was observed in direct single-polymer measurements by
Gerashchenko et al. (2004).

Here, we discuss the statistics of polymers in a chaotic flow with a relatively large
mean shear, which corresponds to the elastic turbulence experiments by Groisman &
Steinberg (2000, 2001, 2004). We assume that the effect of velocity fluctuations
is stronger than that related to thermal noise, and that polymers are essentially
elongated so that the polymer orientation is well defined. Most of the orientational
fluctuations occur close to a special direction preferred by the shear. Sometimes
the typical fluctuations are interrupted by flips, in which the polymer orientation is
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reversed. We describe the statistics of the angular orientation and tumbling time, and
of the polymer extension. We establish the main features of the PDFs.

We begin by introducing the basic dumb-bell-like equation governing the dynamics
of the polymer end-to-end vector in a non-homogeneous flow. If the effect of thermal
fluctuations is negligible, the angular part of the polymer dynamics decouples from its
extensional counterpart and can be examined separately. Angles φ and θ (for in-plane
and off-plane orientations, respectively) are counted from the direction prescribed by
the shear. We show that the PDF of φ is peaked at some small value φt determined
by the velocity fluctuations. The widths (for both angles) of the main part of the
angular PDF are also estimated by φt . We demonstrate that the tails of the joint
PDF are algebraic. Then we examine the PDF of the tumbling time, τ , defined
as the time between two subsequent flips of the polymer. The PDF of τ , P (τ ), is
peaked at a time estimated as λ̄−1 where λ̄ is the Lyapunov exponent of the flow. The
long-time, τ � λ̄−1, tail of the PDF is exponential, ln[P (τ )] ∼ −λ̄τ . The statistics of
small tumbling times is related to the simultaneous PDF of the velocity gradients.
To derive these results we explore the close relation between the angular dynamics
and the Lagrangian dynamics of the flow. Then we formulate the basic stochastic
equation governing the dynamics of the polymer extension and analyse the structure
of the extension PDF which shows a strong dependence on the Weissenberg number,
Wi , defined as the product of the polymer relaxation time and λ̄. We consider four
cases corresponding to qualitatively different PDF behaviours. We explain how the
typical extension R depends on Wi and examine the tails of the extension PDF, for
R less than and larger than its typical value. The structure of the tails is complicated,
consisting in some cases of a number of asymptotic sub-intervals. We explain a
dynamical origin of all the sub-intervals. To illustrate our generic analytical results,
we present graphs, corresponding to the four different regimes, obtained by direct
numerical simulation made within a model of short-correlated velocity statistics and
of the so-called FENE-P modelling. We conclude by discussing the applicability
conditions for our approach and the validity of the assumptions made.

2. Model
We consider a single polymer molecule advected by a chaotic/turbulent flow (i.e. the

polymer moves along a Lagrangian trajectory of the flow) and stretched by velocity
inhomogeneity. The polymer stretching is characterized by the molecule’s end-to-end
separation vector, R, satisfying the following dumb-bell-like equation (see e.g. Hinch
1977; Bird et al. 1987):

∂tRi = Rj ∇j vi − γ (R)Ri + ζi. (2.1)

Here γ is the polymer relaxation rate and ζi is the Langevin force. The velocity
gradient ∇j vi is taken at the molecule position. The velocity difference between the
polymer end points is approximated in (2.1) by the first term of its Taylor expansion
in the end-to-end vector. This is justified if the polymer size is less than the velocity
correlation length. The relaxation rate γ in (2.1) is a function of the extension
R which varies from zero up to a maximum value Rmax corresponding to a fully
stretched polymer. We assume that the relaxation is Hookean for R � Rmax, i.e. γ (R)
is approximated well by a constant γ (0) there, while it diverges (the polymer becomes
stiff) for R → Rmax.

We focus on the situation in which the effect of velocity fluctuations is stronger than
that of thermal fluctuations, so that the Langevin force ζ in (2.1) can be neglected. We
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Figure 1. Polymer orientation geometry.

consider the case in which the steady shear flow is accompanied by weaker random
velocity fluctuations, the setting realized in the elastic turbulence experiments by
Groisman & Steinberg (2000, 2001, 2004). We choose the coordinate frame associated
with the shear flow, as shown in figure 1, where the mean flow is characterized by
the shear velocity (sy, 0, 0) and s is positive. Then the polymer end-to-end vector R
is conveniently parameterized by the spherical angles φ and θ: Rx = R cos θ cos φ,
Ry = R cos θ sin φ, Rz = R sin θ . In terms of these variables, (2.1) (with the Langevin
term omitted) transforms into the following set of equations:

∂tφ = −s sin2 φ + ξφ, (2.2)

∂tθ = −s sin φ cos φ sin θ cos θ + ξθ , (2.3)

∂t lnR = −γ (R) + s cos2 θ cos φ sin φ + ξ‖, (2.4)

where ξφ , ξθ and ξ‖ are random variables related to the fluctuating component of the
velocity gradient. Note, that the angular (orientational) dynamics described by (2.2),
(2.3) decouples from the dynamics of the polymer extension, R, and that, at γ = 0,
(2.4) describes a divergence of neighbouring Lagrangian trajectories.

3. Angular statistics
The statistics of the velocity fluctuations is assumed to be homogeneous in time.

In a statistically stationary velocity field, the angular statistics is stationary as well,
characterized by the joint PDF, P(φ, θ ), which is a periodic function of the angles
with period π for both φ and θ . Thus, it is sufficient to consider P(φ, θ ) within
the bounded domain (torus) −π/2 < φ, θ < π/2. According to (2.2), (2.3), P(φ, θ ) is
symmetric with respect to θ but it is not symmetric with respect to φ. Therefore, the
average value of φ, φt = 〈φ〉, is non-zero. In our setting, φt is positive. The value
of φt can be estimated by balancing the deterministic and stochastic terms on the
right-hand side of (2.2). The weakness of the random term in comparison with s

implies φt � 1. Quantity φt also estimates typical fluctuations of φ about its mean
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value. If the random terms in (2.2), (2.3) are assumed to be comparable, it immediately
follows that the typical value of θ fluctuations is estimated by φt as well.

Note that the equation, ∂t ri = rj ∇j vi , describing the dynamics of separation r
between two neighbouring fluid particles (moving along nearby Langangian trajec-
tories), leads to the same angular dynamics as determined by (2.2), (2.3). For r = |r|
one derives ∂t ln r = s cos2 θ cos φ sin φ +ξ‖, where ξ‖ represents the direct (as opposed
to indirect through fluctuations in φ) effect of velocity fluctuations. It follows from
(2.2) that for typical fluctuations (when φ, θ � 1) ξφ competes with sφ2. Assuming
that ξ‖ ∼ ξφ one finds that ξ‖ is negligible in comparison with sφ, because the relevant
values of φ are small, φ � 1. Therefore, for small φ, θ , one arrives at ∂t ln r = sφ. This
equation establishes the relation between the angular dynamics of the polymer and
the dynamics of Lagrangian separation. For the Lyapunov exponent, defined as the
mean logarithmic rate of divergence of Lagrangian trajectories, λ̄ ≡ 〈∂t ln r〉 = sφt .

It is natural to expect that the Lagrangian velocity correlation time is λ̄−1, that is
also a characteristic time of the ξφ and ξθ variations. Then, comparing the left-hand
sides of (2.2), (2.3) with the first terms on their right-hand sides (for φ, θ � 1), one
concludes that the angular correlation time can be estimated by the same quantity
λ̄−1 = (sφt )

−1. Next, equating the terms on the right-hand sides of (2.2), (2.3), one
derives ξφ ∼ ξθ ∼ sφ2

t � s. The last inequality reflects the assumed weakness of the
velocity gradient fluctuations compared to the shear rate, s.

4. Tails of the angular PDFs
Let us consider the domain |φ|, |θ | � φt , where the random terms in (2.2), (2.3), ξφ

and ξθ , are negligible. The angular dynamics is purely deterministic in this domain
leading to the following dependence of the angles on time t:

cotφ = s(t − t0) , tan θ = c sin φ, (4.1)

where t0 and c are constants. The vector R reverses its direction as t increases.
Therefore, (4.1) describes a single flip of the polymer. Due to the assumed homogeneity
in time of the velocity statistics, t0 is homogeneously distributed. Recalculating the
measure dt0 in the PDF of the angles in accordance with (4.1), one derives

P(φ, θ ) = U (tan θ/ sin φ) sin−3 φ cos−2 θ. (4.2)

The function U reflects possible variations in the parameter c (its statistics), which is
determined from the initial conditions for the deterministic evolution. These conditions
have to be found from matching (4.1) to those defined for the stochastic domain
|φ|, |θ | < φt . One concludes that the function U is sensitive to the angular dynamics
in the stochastic domain and, respectively, to details of velocity fluctuations, i.e. the
function is non-universal. Note, that (4.2) is identical to the one found by Hinch &
Leal (1972) in the context of a solid rod tumbling in shear flow caused by thermal
fluctuations.

Equation (4.1) shows that in the deterministic regime the angle φ decreases uni-
formly with time (that is except for the jump from −π/2 to +π/2 at t = t0). Therefore,
the stationary PDF for the angular degrees of freedom, P(φ, θ ), corresponds to a
non-zero probability flux from positive to negative φ related to a preferred (clockwise)
direction of the polymer’s rotations in the (X, Y )-plane. Formally, the probability flux
goes out through φ = −π/2 and the same flux comes back (enters) through φ = π/2
(π/2 and −π/2 are identical by our construction) thus keeping the total probability
equal to unity.
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The PDF of φ, Pφ , can be obtained from the joint PDF: Pφ =
∫

dθ P(φ, θ ).
Integrating (4.2) over θ one obtains the following expression valid for |φ| � φt :

Pφ ≡
∫

dθ P(φ, θ ) = Cφt sin
−2 φ, (4.3)

where the constant C is of order unity. Let us reiterate that, thinking dynamically, (4.3)
originates from the deterministic flips bringing φ from its most probable domain ∼ φt

to the observation angle. Equation (4.3) describes the probability flux: as determined
by (2.2), Pφ∂tφ is constant in the deterministic region.

Consider the PDF of θ , Pθ =
∫

dφ P(φ, θ ). The naive result for the PDF tail
following from (4.2) is Pθ ∝ θ−2, provided 1 � |θ | � φt . However, one should be
careful, since (4.2) does not cover a particular angular domain, characterized by
|φ| < φt and |θ | � φt , which should be analysed separately. In this domain, one can
neglect ξθ in (2.3). Assuming also |θ | � 1, one arrives at ∂t ln(θ) = −sφ, where sφ

can be treated as a random variable independent of θ . It follows that the tail of the
θ PDF is related to the long (compared to the correlation time λ̄−1) period when φ

fluctuates around some negative value, ∼ −φt . (These fluctuations can be interrupted
by flips.) Then θ at the end of a period T is estimated according to ln(θ/φt ) ∼ T sφt .
The probability W to observe such a long atypical period is estimated by lnW ∼ −λ̄T .
These estimates, recalculated in the PDF of θ , Pθ = dW/dθ , give an algebraic tail
Pθ ∝ |θ |−a , where the exponent a is a positive number of order unity sensitive to the
statistics of the φ fluctuations. (Therefore, a is not universal.) Note that this algebraic
tail is analogous by its origin to the algebraic tail of the polymer extension PDF
discussed by Balkovsky et al. (2000, 2001) and by Chertkov (2000).

Thus one finds two different contributions to the PDF tail: one is related to the de-
terministic motion, described by (4.1), while the other is associated with the stochastic
evolution in the domain |φ| <φt, |θ | � φt . For 1 � |θ | � φt , both contributions are
algebraic, ∝ |θ |−2 and ∝ |θ |−a , respectively. The deterministic contribution, ∝ |θ |−2,
dominates if a > 2, while the stochastic contribution, ∝ |θ |−a , dominates otherwise.

5. Tumbling time statistics
As follows from (4.1), the deterministic process, which defines the polymer turn

(because φ changes essentially only during the deterministic part of the dynamics),
is faster than the stochastic wandering taking place at small angles, |φ|, |θ | ∼ φt .
Therefore it is convenient to define the tumbling time, τ , as the time separating two
subsequent crossings in φ of the special angle ±π/2, in the middle of the deterministic
domain. Since the major contribution to τ originates from the stochastic wandering
in the φt vicinity of φ = 0, the position of the τ -PDF maximum and its width
are both estimated by the correlation time (sφt )

−1, because this is the only relevant
characteristic time of the stochastic evolution.

Considering the PDF tail for τ � λ̄−1, one observes that if a flip does not occur
for a long time, then this delay can be interpreted in terms of the large number, λ̄τ ,
of independent unsuccessful attempts to pass (clockwise in φ) the stochastic domain
|φ| < φt . The probability of the delayed flip is given by the product of the probabilities
of these λ̄τ events, resulting in ln Pτ ∼ −λ̄τ , for τ � λ̄−1.

The left, τ � λ̄−1, tail of the tumbling time PDF is non-universal because it is
sensitive to details of the velocity field statistics. Indeed, it is determined by the
special configurations of the velocity field that force φ to pass through the stochastic
region atypically fast. (Those configurations are vortices with clockwise rotation of
the fluid in the (X, Y )-plane leading to negative values of ξφ that are larger than sφ2

t
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in absolute value.) Analysing the anomalously fast revolutions of the polymer, one
finds that ξφ from the right-hand side of (2.2) may be considered as time-independent.
(Here again, the natural assumption is that the correlation time of the velocity field
fluctuations is of the same order as the inverse Laypunov exponent in the flow, ∼ λ̄−1.)
Then the direct solution of (2.2) gives τ = π/

√
|ξφ |s, where we have assumed that

the major contribution to τ comes from the domain of small φ, φ � 1. This estimate
holds if s � |ξφ | � sφ2

t . For 1/s � τ � λ̄−1 one arrives at the following expression for
the PDF of τ : Pτ = 2π2τ−3s−1Pξ (−π2/[τ 2s]), where Pξ is the single-time PDF of ξφ .

6. Polymer extension statistics
For most of the R dynamics, the basic dynamical equation (2.4) can be simplified.

First, the main contribution to the R dynamics stems from the region of small angles
where sin φ can be replaced by φ and cos θ by unity. Second, the term ξ‖ is potentially
important only in the stochastic region where ξφ competes with sφ2. Assuming ξφ ∼ ξ‖,
we conclude that ξ‖ is negligible in comparison with sφ there. Therefore

∂t lnR = −γ (R) + sφ. (6.1)

Note that (6.1) is inapplicable when R is close to its minimum value during a flip
(since the angles φ, θ are of order unity there). Note also that (6.1) is correct for
R � RT (RT is the typical size of the polymer in the absence of the flow) where the
Langevin force can be neglected.

The statistics of R is determined by the interplay of the two terms on the right-hand
side of (6.1). Since the average value of sφ is equal to the Lyapunov exponent, λ̄,
the dimensionless parameter characterizing the statistics of the polymer extension is
the Weissenberg number, Wi = λ̄/γ (0), which grows with the strength of the shear,
or/and, of the velocity fluctuations. At Wi = 1, when the two terms on the right-hand
side of (6.1) balance, the system undergoes the so-called coil-stretched transition, see
Lumley (1969, 1973), Balkovsky et al. (2000, 2001), and Chertkov (2000) for details.
We find, however, that in the specific case of strong shear considered here additional
qualitative changes in the PDF of R occur at Wi > 1 so that the overall picture is
richer than in the case of isotropic velocity statistics. Below we describe the extension
PDF as a function of Wi .

To illustrate our generic analytical results we plot in figure 2 four graphs of the
extension PDF obtained by numerical simulations based on a modification of (6.1),
∂t lnR = −γ + s sin φ cosφ, which allows the correct reproduction of the flips, and
(2.2) with the stochastic term ξφ chosen to be δ-correlated in time. The simulations
were done with γ (R) = γ (0)/(1 − R2/R2

max), corresponding to the so-called FENE-P
model of the polymer elasticity, see e.g. Bird et al. (1987).

6.1. Wi < 1, α > 0

We begin by discussing the case Wi < 1, for which the polymer is only weakly stre-
tched. Then, typically, the molecule stays in the ‘coil’ state characterized by the thermal
size, RT , which emerges as the result of a balance between the Langevin–driven
extension and contraction (relaxation) related to polymer elasticity. Recall that due
to a large number of monomers in the polymer molecule, the thermal-noise-induced
length, RT , is much smaller than the maximal polymer extension, Rmax.

At the scales larger than RT the thermal noise is irrelevant and the extension
dynamics is described by (6.1). We are interested in the statistics of R for large,
R � RT , a problem already analysed in detail by Balkovsky et al. (2000, 2001),
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Figure 2. PDF of the polymer extension, R, measured in the units of maximal extension,
for different values of Wi , obtained from numerical simulations of the stochastic equations
explained in the text.

Chertkov (2000), where it was shown that the extension PDF is

P (R) ∝ R−1−α, (6.2)

with α > 0. Equation (6.2) holds for Rmax � R � RT where γ (R) weakly deviates from
γ (0). The situation is reflected in figure 2(a), where the algebraic tail is clearly seen. The
positive value of the exponent α in (6.2) guarantees that the normalization integral∫

dR P (R) converges in the region R � RT . Thus, the normalization coefficient in
(6.2) is ∼ R−α

T . The exponent α decreases as Wi increases, and it crosses zero at the
coil–stretch transition, where Wi = 1.

The algebraic tail (6.2) is related to a long (compared to the correlation time λ̄−1)
process of polymer extension from the typical value RT to the current value of the
extension, R � RT . Note that this long extension does not mean that the right-hand
side of (6.1) is always positive during the process of extension since φ fluctuates and
sφ is larger than γ only on average. Moreover, the process consists of alternating
stochastic and deterministic portions (polymer flips during the later ones). Although
R decreases during the first half of the flip, the initial extension is restored (returns
to its initial value) during the second half. Overall, the flips do not influence the
extension process. The probability W of this atypically long extension process depends
exponentially on its duration T , since W is a product of independent probabilities,
each representing a sub-processes of duration λ̄−1. This gives the estimate ln W ∼ −λ̄T .
On the other hand, in accordance with (6.1), ln(R/RT ) ∼ λ̄T . Combining the two
estimates, we arrive at the algebraic tail (6.2) for the extension PDF, P = dW/dR.
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6.2. Wi > 1, −1 < α < 0

Above the coil–stretch transition, when λ̄ exceeds γ (0), the polymers become strongly
extended. In this stretched state the typical size of the polymer, R∗, is much larger
than RT . Considering the average of (6.1) one finds γ (R∗) = λ̄.

The left tail of the PDF, corresponding to RT � R � R∗, is governed by the same
algebraic law (6.2) (figure 2b). However, now α < 0, meaning that the normalization
integral

∫
dR P (R) has a major contribution for R ∼ R∗. Therefore, restoring normal-

ization, one derives P ∼ Rα
∗ R−1−α for the R � R∗ tail. The transition from positive to

negative α implies an important change in the nature of the dynamical configuration
corresponding to the algebraic tail: extension, as a typical process for α > 0, is replaced
by contraction for negative α, so that initially typical extension, ∼ R∗, contracts
through a long, T � λ̄−1, (multi-tumbling) evolution. (Physical arguments, clarifying
the origin of the algebraic tail, are identical to the ones presented above for Wi < 1.)

The right tail, corresponding to extreme extensions, Rmax −R � R −R∗, can also be
explained in general terms. The domain is characterized by extremely fast relaxation,
so that the left-hand side of (6.1) can be neglected: γ (R) = sφ. Moreover, because of
the fast nature of the polymer relaxation in the extreme case, φ simply follows the
respective random term in (2.2), i.e. the left hand side of (2.2) can also be neglected
resulting in sφ2 = ξφ . In other words, the extreme configuration is produced through
a fast anticlockwise revolution of the polymer to a large (in comparison with the
typical value φt ) positive angle, 1 � φ � φt , driven by anomalous fluctuations in ξφ .
Recalculating the PDF of ξφ to P (R) one arrives at P (R) = 2s−1γ γ ′Pξ (γ

2/s), where
Pξ is the simultaneous PDF of the velocity gradient term ξφ . Note that the expression
for P (R) is not restricted to the case considered in this subsection but applies to the
description of extreme extensions in all regimes.

6.3. Wi > 1, α < −1

Once α crosses −1, R∗ becomes maximum of the extension PDF, P (R). This
modification in the PDF shape is accompanied by the emergence of a plateau on the
left from the maximum (see figure 2c), associated with an additional contribution to
the PDF related to the deterministic angular dynamics.

Let us explain the origin of the plateau. For angles which are smaller than unity
but larger than φt , R and φ satisfy, ∂t lnR = sφ and ∂tφ = −sφ2, as follows from
(2.2), (6.1). Integrating these equations one derives R = A|t − t0| where t0 and A

are constants, the latter being estimated by A ∼ λ̄R∗. Assuming that the time t0 is
homogeneously distributed (due to the assumed homogeneity of the velocity statistics),
and recalculating the measure dt0 to the PDF of R, one arrives at P (R) = C/R∗ (C
is an R-independent O(1) constant) corresponding to the plateau seen in figure 2(c).

The ‘deterministic’ contribution to P (R), ∼ 1/R∗, discussed above, does not cancel
the ‘stochastic’ one ∼ Rα

∗ R−1−α corresponding to the long contraction which starts at
R∗; these contributions co-exist. For −1 <α < 0, the stochastic contribution dominates,
in full agreement with the discussion of § 6.2. When α < − 1, the situation is reversed
and the deterministic contribution dominates.

The plateau extends from R ∼ R∗ down to R ∼ R∗φt , where R∗φt is the smallest
value of R one can achieve under the condition that when the flip begins the initial
extension is R∗. However, if the initial extension is smaller than R∗, a deterministic
flip could bring it to values that are smaller than R∗φt . Therefore, to understand
even smaller values of R, R < R∗φt , one should consider flips which begin with an
anomalously small initial value R0, R0 < R∗ (prepared by some preliminary and long
stochastic processes, of the type discussed above). The probability density of achieving
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R0 during the preparatory stage is estimated according to (6.2): ∼ Rα
∗ R−1−α

0 . On the
other hand, any R0 that lies between R and R/φt transforms dynamically as a result
of a fast flip into the current value of extension R with the same R-independent
probability, which now can be estimated as ∼ 1/R0. Therefore, one arrives at an
estimate valid for R < R∗φt that explains the probability decrease at the smallest R

seen in figure 2(c):

P ∼
∫ R/φt

R

R−1
0 dR0R0

[
Rα

∗ R1+α
0

]
∼ R

−|α|
∗ (R/φt )

|α|−1 . (6.3)

One can observe the bump in figure 2(c) separating the plateau and the power tail.
To explain the bump, one simply needs to account for the angular nonlinearity in the
estimate of the plateau just discussed.

6.4. Wi � 1, α � −1

The larger Wi is, the closer R∗ approaches Rmax. Then the condition of fast relaxa-
tion, Rγ ′(R) � γ , which has already allowed us to analyse the −1 <α < 0 regime,
also applies to the region in the vicinity of R∗. The smallness of the ratio γ /(Rγ ′)
suggests that the left-hand side of (6.1) can be replaced by zero, resulting in
γ (R) = sφ. Expressing the PDF of R through the PDF of φ one arrives at
P (R) ∼ s−1γ ′(R)Pφ(γ /s), where it is also assumed that γ (R)/s < φt . In this special
domain of R and φ, variations of Pφ are slow, so that the main dependence on R is
due to the factor γ ′(R). The expression for P (R) also applies to the left (for smaller
values of R) of R∗ provided Rγ ′(R)/γ is large. In this domain, the PDF can be
estimated as P ∼ γ ′(R)/γ (R∗). At even smaller values of R, the PDF has a plateau,
P ∼ γ (0)/[R∗γ (R∗)] (which generalizes our previous result to the Wi � 1 case). This
explains the complex behaviour of the PDF of R shown in figure 2(d).

To conclude, the PDF of R demonstrates complex and rich Wi -dependent behaviour
related to a number of distinct processes governing polymer dynamics. We observed
that the typical value of the extension, associated with the stochastic wandering of the
polymer orientation around the shear-preferred direction, increases with Wi . In the
region of maximal stretching, near Rmax, the major contribution to the PDF originates
from the fast adjustment of the polymer extension to the current value of the angular
degrees of freedom. We identified special contributions to the PDF tails associated
with fast (deterministic) flips and long (stochastic) extension/contraction processes.

7. Discussion
We have studied the dynamics and statistics of the polymer molecules placed in

a chaotic flow with mean shear. Encouraged by qualitative agreement of our results
with the newest experimental data of Gerashchenko et al. (2004), we anticipate that
the rich variety of theoretical predictions presented in the paper will help guide and
test future experimental works in this field. In this context it is important to discuss
applicability conditions and limitations of our approach.

Our theory is based on the simple dumb-bell-like equation (2.1). This equation is
obviously approximate, taking into account only one variable (end-to-end vector R)
of generally more complex polymer dynamics. Therefore, it is important to assess
the effects of more realistic modelling. It was our assumption that the mean flow
can be approximated by a perfect shear flow, whereas in reality flow parameters
demonstrate spatial inhomogeneities. Even though these variations were not included
in our derivations, our results remain valid if the variations along the Lagrangian
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trajectories occur on time scales larger than λ̄−1 and also if the local flow does not
deviate strongly from the shear configuration. Then, the PDFs discussed in this paper
adjust adiabatically to the current values of the parameters becoming slow functions
of spatial position. If the regular part of the flow is elongational, polymer flips become
forbidden in the ideally deterministic regime while fluctuations will still generate some
tumbling.

Polymer tumbling was first observed in the steady shear flow experiments by Smith
et al. (1999) and Hur et al. (2001) in which orientational fluctuations were driven
by thermal noise, while our analysis has focused primarily on the case of tumbling
driven by velocity fluctuations. Therefore, even though all of our results are directly
applicable to the elastic turbulence setting of Groisman & Steinberg (2000, 2001,
2004), examination of the statistics of the Langevin–driven tumbling and of angular
and extension probability distributions is a separate task. These problems will be
examined elsewhere.
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